

Heater Pass Balancing using MPC on a Redundant DCS Node

91b

Lanny E. Gibson Control Systems Superintendent – DCS/SIS/PLC – Maintenance Department Total Energies Refining and Chemicals Port Arthur, TX lanny.gibson@totalenergies.com

> Mark Spencer Senior Process Control Engineer Total Energies Refining and Chemicals Port Arthur, TX mark.spencer@totalenergies.com

Doug Jackson Process Control Engineer Total Energies Refining and Chemicals Port Arthur, TX doug.jackson@external.totalenergies.com

Logan Moss Central Control Supervisor Total Energies Refining and Chemicals Port Arthur, TX logan.moss@totalenergies.com

Allan Kern, PE Control Engineering Consultant Lin and Associates, Inc. Phoenix, AZ kern@linandassociates.com Tyler Smith Jr. Project Execution Manager Lin and Associates, Inc. Phoenix, AZ smith@linandassociates.com

© TotalEnergies Petrochemicals & Refining USA, Inc., and Lin and Associates, Inc.

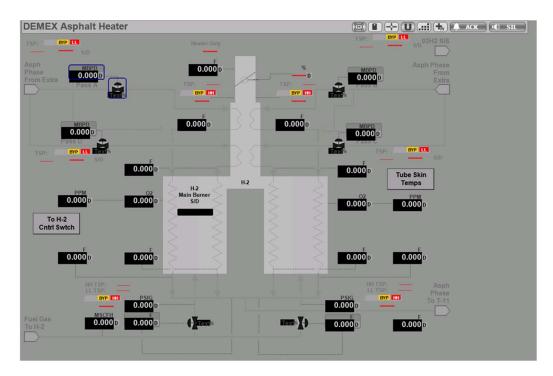
Prepared for Presentation at American Institute of Chemical Engineers 2023 Spring Meeting and 19th Global Congress on Process Safety Houston, TX March 12 - 16, 2023

AIChE shall not be responsible for statements or opinions contained in papers or printed in its publications

Keywords: Multivariable control, MPC, Advanced Process Control, APC, Deltum-XMC, Pass Balancing

Abstract

A multivariable controller to balance heat distribution by adjusting individual heater pass flows, while maintaining upstream level control and managing other process constraints, was implemented in a redundant DCS node. The controller overcame various instrumentation issues including significant valve stiction to reduce heater pass imbalances, skin temperature excursions, and improve upstream level stability across a wide range of process flow rates. The controller was designed and implemented using Lin and Associates' Model-less Multivariable Controller, Deltum-XMC®, installed in the Honeywell Experion® control node, and commissioned in less than a calendar-week without step-tests or process modeling. The controller is running at a 2-second interval in a redundant control node.


1 Process Description

Heater pass balancing is industry best practice and has been implemented on the vast majority of fired heaters in industry. Pass balancing is an advanced process control (APC) strategy that adjusts the individual pass flow control valves of a multiple pass heater to achieve equal pass outlet temperatures. Equal pass outlet temperatures, as opposed to equal pass flows, is more effective at reducing overall tube fouling, coking, and excessive metallurgical temperatures.

The multivariable APC controller, in addition to balancing the pass outlet temperatures, typically has one or more additional combined control objectives, such as total flow control or level control of the feed or discharge vessel. In the application at hand, the combined objective is level control of the liquid-liquid extractor vessel that feeds the heater.

A multivariable pass balancing application may have additional constraints, such as minimum or maximum flow, valve position, or temperature. These are typically selected based on the likelihood and potential impact of faulty valve or temperature measurement behavior. In the application at hand, in addition to the pass balancing temperature targets (one for each of the four passes), a minimum flow constraint for each pass has been included in the controller matrix design.

Heater outlet temperature control typically works independently of pass balancing. However, where a heater has multiple fireboxes, pass balancing can also automatically balance the load (shift flow) between fireboxes, if one firebox becomes constrained, for example due to low excess oxygen or high burner fuel gas pressure.

Figure 1: DCS Heater Process Graphic

C	N OF	F XMC TAG: 0	3XMC01		DESC: D	EMEX P	ASS	BALANC	E XMC	F	PERIOD: 0	SECS	SPEED	0.00	PROCESS	MATRI
	RENT MESS/ D MESSAGE	AGE: 0 MV: 0 0 MV: 0	CV: 0 CV: 0				-								OPER	ENGR
MV	SERV	MV TAG	MV DESC		MV VAL	UE		LOLIM	TARGET	HILIM	MOVE	_			_	_
1	0	03FC1020		OP	0.000	\$	м	0.000	0.000	0.000	0.000					
2	0	03FC1021		OP	0.000	¢	М	0.000	0.000	0.000	0.000					
3	0	03FC1022		OP	0.000	\$	м	0.000	0.000	0.000	0.000					
4	0	03FC1023		OP	0.000		M	0.000	0.000	0.000	0.000					
															I	MV Trer
cv	SERV	CV TAG	CV DESC		CV VAI	UE		LOLIM	TARGET	HLM	PREDCT					MV Trer
CV 1	SERV	CV TAG 03TX685	CVDESC	PV	CV VAL	.UE		LOLIM 0.000	TARGET	HILIM 0.000	PREDCT	_		_		MV Trer
CV 1	0		CVDESC	PV		.UE			0.000		0.000					MV Trer
1		03TX685	CV DESC		0.0	.UE		0.000	0.000	0.000	0.000			_		MV Tren
1	0	03TX685 03TX686	CV DESC	PV	0.0 0.0	UE		0.000 0.000	0.000	0.000 0.000	0.000 0.000 0.000					VV Trer
1 2 3	0	03TX685 03TX686 03LX61	CV DESC	PV PV	0.0 0.0 0.0	UE		0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000 0.000					MV Tren
1 2 3 4	0	03TX685 03TX686 03LX61 03FX1020	CV DESC	PV PV PV	0.0 0.0 0.0 0.0	UE		0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000					√V Tren
3 4 5		03TX685 03TX686 03LX61 03FX1020 03FC1020	CV DESC	PV PV PV PV	0.0 0.0 0.0 0.0	UE		0.000 0.000 0.000 0.000 0.000	0.000 200.0 200.0 200.0 200.0 200.0	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000					MV Tren

Figure 2: DCS Deltum-XMC Operator Graphic

2 Process Control Performance

Prior to installing an APC pass balancing application on the subject heater, process operation was very challenging in terms of excessive alarms, safety system demands, and excessive console operator resources. This was due to multiple factors, including the inherently noisy nature of the temperature and flow measurements on this process; frequently erratic behavior of

the liquid-liquid interface level measurement; the severe service nature of the control valves – high temperature and very heavy material – which results in high valve stiction; and frequent heater swings due to changing rates.

As a result, this heater was a known refinery bad actor, in terms of alarms, safety system challenges, and operator demands, as described above, and this was further confirmed using loop intervention analysis, which showed that all seven involved control loops (four pass flows, one level controller, and two heater box temperature controllers) exhibited several hundred percent excess operator interventions relative to top quartile well-performing control loops.

After application of the multivariable APC controller, all related control loops immediately moved into the top-performing category and have remained there with no degradation of performance or application maintenance needs over a full year of operation.

Controlled Variable	Standard Deviation Before	Standard Deviation After	Decrease in Variability	
CV 1 (Cell 1 Delta T)	82.22	6.945	91.6%	
CV 2 (Cell 2 Delta T)	63.87	5.85	90.8%	
CV 3 (Extractor Level)	40.85	1.44	96.5%	
CV 4 (Cell Delta Flow)	1.20	0.12	89.8%	

Figure 4: Controlled Varaible (CV4) Performance

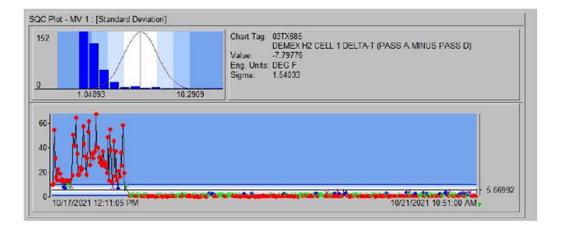


Figure 5: Controlled Variable (CV) Performance (Standard Deviation)

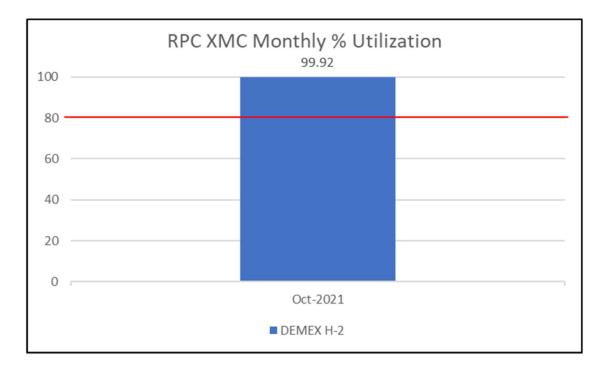


Figure 6: Utilization History: October 18, 2021 – October 31, 2021

	03FC1020	03FC1021	03FC1022	03FC1023	03LC6x	03TC363	03TC373
JUL	167	236	131	120	102	303	265
AUG	7	90	5	0	61	97	105
SEP	1	10	31	0	67	60	68
ост	209	158	152	288	74	437	417
NOV	2	1	1	5	1	137	46

Figure 7: Loop Intervention Analysis Results of Related Regulatory Controllers

Loop intervention analysis can be used to identify multivariable control loops that are "open" or in manual- mode. These loops are typically referred to as "bad-actor loops." Including these loops and appropriate constraints in the DELTUM controller allows the loops to be "closed" or operated in automatic mode.

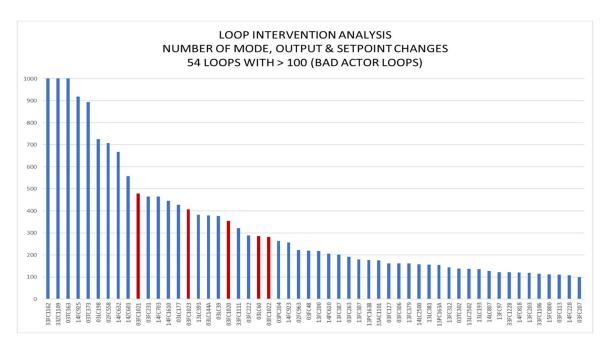


Figure 8: Loop Intervention Analysis: Top 100 "Bad Actor Loops" Used to identify needed/potential APC applications

3 Benefits

This APC application had immediate tangible benefits, especially in terms of fewer alarms, less safety system challenges, and better use of console operator resources. Prior to installing the

APC application, many process upsets led to lengthy periods of continuous operator intervention to keep the process within bounds and avoid abnormal conditions and process trips. After applying APC, when process upsets occur, console operators now double check to assure the APC is fully enabled and allow it to handle all the ensuing control action adjustments to maintain stable and reliable process operation, while minimizing alarms, trips, and abnormal conditions. This has had a large tangible positive impact on process operation and console performance.

Another benefit of the APC technology that was employed is that it is model-less and resides directly in the redundant DCS level controller. This means that it is very cost and time effective to engineer, deploy, operate, and support. It was installed and tested on-site in under two days and began running continuously on the third day. A further benefit of the model-less technology is there are no models to degrade or maintain over time; no plant step testing up front; and no step testing going forward if it becomes necessary to add a new variable or troubleshoot some aspect of performance.

The fast controller execution period (2 seconds) and redundancy of this architecture – APC in the control layer – gives the Deltum-XMC controller additional ability to respond quickly to fast disturbances, and to meet high-availability automation requirements. Extractor level interface control has significantly improved, leading to overall more stable and reliable process performance.

Because Deltum-XMC deploys natively within the host DCS, as opposed to a traditional external APC host (or "supervisory") computer, it shares a common HMI scheme with all the other DCS operation graphics. Also, there are no separate applications to manage, and no foreign computers or servers to integrate, or associated cyber-security issues.

The application has now operated for over a year with essentially no downtime, additional tuning, or maintenance. The controller has performed equally well with process rate turndowns of 2:1.

4 Next Steps

The loop intervention analysis results can be used, along with plant input from operators, process engineers, etc., to identify groups of related base-layer controllers that constitute additional potential multivariable control applications, to capture this type of automation improvement throughout the refinery complex.